

OSD and Air Force Microelectronics Design and Prototype Challenge

Presenter: Vipul J. Patel, Ph.D. Senior Electronics Engineer, United States Air Force

2020 DARPA ERI Summit Creating a Resilient and Robust Microelectronics Pipeline 19 August 2020

https://www.CTO.mil

@DoDCTO

UNCLASSIFIED

Current State of Affairs

Horizontal Integration of Semiconductor Fabrication

- Increased cost for state-of-the-art foundry
- Increased Reliance on Third-party Manufacturing
- Reduction in U.S. semiconductor manufacturing
- Increased Risk

Source: World Fab Forecast report (November 2016, SEMI)

Desires

- To maintain access to SoA IC facilities and technologies
- Increase domestic workforce
- To reduce risk
- To prevent IP theft, malicious modification

Source: Center for International Data from Robert Feenstra Source: BACI International Trade Database

UNCLASSIFIED

Innovation Pipeline

UNCLASSIFIED

Innovation Challenges

Stimulating and Supporting Innovation: $\land F W \equiv R \times$ Lowering barriers to advanced IC technologies Encouraging and adopting rigorous design practices *Providing IP design capture, integrity, and assurance environments and tools*

Source: https://afwerxchallenge.com/microdesign

ICs for operation or improvement of a self-defined autonomous product while maintaining the provenance, traceability and security needs.

82 Proposals 44 Showcase Participants Phase 2: 10 Performers Phase 3: 4 Performers/3 Teams

Commercial application, Dual-use, Non-ITAR

UNCLASSIFIED

Phase 1: ~ 2.5 months Submit Proposals Phase 2: ~ 4 months **Design & Simulation** Phase 3: ~ 6 months Physical Design Phase 4: ~ 7 months (incl. fabrication) Physical Prototype Phase 5: ~ 5 months Prototype Testing and Demonstration Phase 6: TBD **Full Production**

Addressing Domestic Autonomous Needs

Applicable Performer Technologies

 Interior Department grounds its drones over Chinese spying fears and cyber security concerns.

Source: https://www.nytimes.com/2020/01/29/technology/interior-chinese-drones.html Source: https://techcrunch.com/2020/01/29/interior-ground-drones-cybersecurity/

UNCLASSIFIED

Advanced Microelectronics Design and Prototype Challenge (1/2)

Phase 2 Performers

Embodiment of Innovation Challenge

galois EyL DEFENSEWERX InertialWave UTD borsetta

Ridgetop Group Inc.

GrAI Matter Labs LUCID CIRCUITS

INDIANA **INTEGRATED** CIRCUITS, LLC.

IoT/AI

(Intelesense Technologies)

Current Vendor Partners providing EDA, IP, and Support

ANSYS **arm** cādence

GLOBALFOUNDRIES Tortuga

synopsys Logic

ME Ecosystem Provided via Existing Infrastructure

Nimbis Services

DoD-accessible challenge focusing on innovation through offerings of SoA technologies and reducing their costs to non-traditional performers where the USAF is the licensee.

UNCLASSIFIED

onespin

Advanced Microelectronics Design and Prototype Challenge (2/2) Embodiment of Innovation Challenge

7

Phase 3 Teams

★ARCNet

InertialWave / UTD

(Intelesense Technologies)

Current Vendor Partners providing EDA, IP, and Support

ANSYS arm cādence

GLOBALFOUNDRIES Tortuga

SYNOPSYS Logic

ME Ecosystem Provided via Existing Infrastructure

Nimbis Services

DoD-accessible challenge focusing on innovation through offerings of SoA technologies and reducing their costs to non-traditional performers where the USAF is the licensee.

UNCLASSIFIED

onespin

ME Challenge Secure Design Environment

Performer's Testimonial Pay-offs, Benefits, and Impacts

- Access to and design in advanced node IC technology at a reduced cost (~Typically 100s of thousands of dollars for small chips)
- Increased computing, AI capabilities
- Introductions to the microelectronics' vendors; working business relationship and potential product
- Access to ~\$10Ms of IPs and EDA tools per performer
- Access to advanced computing infrastructure
- Access to vendor support and training
- Design prototypes with reduced upfront costs
- Prototypes can be used to raise funding for production run and new starts
- Simply could not develop 12 nm secure chips without support from ME challenge.
- Huge impact on human resource development: University teams gain access to unprecedented level of tools and IPs to help them grow professionally and offer US marketable skills

Innovation Accelerators: Other Challenges

AFRL

Microelectronics Supply Chain Provenance Challenge BATTELLE KPMG KBSI A FWERXCHALLENGE

cisco **NVIDIA**

157 of three planned cycles (roughly annual cadence)

Brunel

Supply Dynamics

Object Security

Riverside Research

Demonstration International Test Conference, Nov. 12-14, 2019 Marriot Washington Wardman Parl

- III-V Technologies ٠
- Domestic Foundries: Qorvo and BAE Systems
- Performers include non-traditional small businesses and universities.
- Performers are designing power amplifiers for 5G or EW •
- Using ANSYS, cādence, and Keysight EDA tools

Brunel **Supply Dynamics**

UNCLASSIFIED

Summary and Highlights

- Addressing domain of autonomous systems, which augment lack of domestic sources
- OSD ME Challenge is currently in Phase 3.
- Mid-point review on August 27
- All performers have access to platform.
- Performers pushing through physical design.
- Funding enhancement provided by another service agency.
- First demonstration of non-egress secure design for challenges.
- ME challenge helped set up methodology for other innovation accelerators.
 - Commercial support, training, maintenance, and vendor involvement in the DoD ecosystem.
- Created best practices document to navigate the DoD's process for access to GF's IPs, PDKs, and fabrication via DMEA and KCNSC.
- Increased DoD's knowledge-base and understanding for infrastructure and deployment of advanced ME IPs and EDA tools (Workforce development and experience)
- Paradigm shift: DoD representative model for how a Service can be the licensee for ME IPs and EDA tools
 - ME challenge model (IP, EDA, pricing, and purchasing) being extended into other DoD-wide approaches to ME.

UNCLASSIFIED

Acknowledgments

A STATE OF A RECEIPTION OF THE RECEIPTION OF THE

- USAF, OSD, and Government Team
 - AFRL: Todd James, Kevin Miller, Ray Garcia, Stacie Smith-Turner, Susan Borger Ranly, P. Len Orlando III, April Ratliff, Brooke Jett, and Team
 - DMEA/TAPO: Michael Kessler, Jean Pierre Crovetto, Jon Lloyd, and Team
 - DefenseWerx: Greg Britton, Mohamed Kassem, and Team
 - ARCNet: Andrea Seitz, Marcia Gross, Mark Pohl, Ken Wall, Corey Schumacher, Stella Speranza, and Team
 - AFRL/RW, AFRL/RI, 96 TW/JAQ, AFLOA/JAQ, AFMCLO/JAZ, AFRL/SDPE, 711 HPW, AFWERX
- Vendor Partners
 - Arm: Jose-Maria Moniz, Russell Powell, Jennifer Chen, and Team
 - Ansys: Scott Granger, Gary Hunt, and Team
 - Cadence: Jeff Hutton, Rich Gast, Jai Iyer, Morteza Shafiei-Sarvestani, and Team
 - GlobalFoundries: Sebastian Ventrone, Lance Pickup, David Brown, James Mecke, Terry Lovelette, and Team
 - Nimbis Services: Schoeller Porter, Shaun Brady, Jim Jobe, and Team
 - OneSpin: John Rockfort, David Landoll, and Team
 - Synopsys: John Kapinos, Shawn Fetterolf, Sean Curry, and Team
 - Tortuga Logic: Jason Oberg, Jagadish Nayak, Juan Chapa, and Team
- Performers
 - Borsetta, Inc., Eyl, Inc., Galois, Inc., GrAI Matter Labs SAS, IIC, LLC, Inertial Wave, Inc., Intelesense Technologies (IOTAI), Lucid Circuit, Inc., Ridgetop Group, Inc., UT at Dallas

UNCLASSIFIED

ME Challenge: Phase 3 Performer Technologies

galois

GLASS-CV – Galois Low-energy Asynchronous Secure SoC for Computer Vision

Jason Graalum, jasongraalum@galois.com

Problem Statement

Low-Power, Secure System-on-Chip (SoC)		Problem Statement		
Specifically targeted for autonomous systems Advanced Accelerators Efficient AI, image processing, and DSP accel Formally Verified Gbps Cryptography Architected for anti-tamper data protection Secure-Boot RISC-V general purpose processor High-Speed I/O PCIe, Ethernet, DDR4, USB, CSI	Camera Interface Peripheral Interface	Computer Vision and Artificial Intelligence applie and edge applications. Currently available comp hungry and do not fit within the power profile the Additionally existing solutions do not address set Object Create a secure processor SoC, capable of exec while operating within a 1W TDP power envelop efficiency while executing complex machine lear	cations can enable many autonomous, IoT mercial processors for such are too power at such applications frequently require. ecurity at all. tive ecuting CV and AI workloads in real-time, be. Achieve unprecedented energy arning algorithms.	
Taobai	Host Interface High Speed Networking Memory Interface	Customere/Dertro	ro/Stokoboldoro	
 We integrate formally verified hardware cryptographic accelerator cores for data security and a secure-boot complex for tamper detection We implement a variety of methods to test provenance techniques including logic obfuscation and power modeling We use asynchronous circuit technology to enable aggressive voltage scaling achieving dramatic power efficiency 		Customers/Partners/Stakeholders Customers/stakeholders GE, Oil&Gas GE, Oil&Gas	Service Interests	
Target Application and Demonstration				
 Small drones, intelligent sensor networks, mobile/wearable vision systems. We will present a physical demonstration of thermal failure in current solutions comparable to GLASS-CV. 				
UNCLASSIFIED				

UNGLAJJIFIEL

Galois July 2020

Distribution Statement A: Approved for public release; DOPSR Case # 20-S-1941 applies. Distribution is unlimited.

14

InertialWave Inertial Navigation System on a Chip Development

Peter Bond, peter@inertialwave.com

Problem Statement

Nav Grade Performance: High Volume Low Volume Low Volume Bliley Te	State of the art high-end Inertial IMU/INS solutions power consumption and volume are too large for A-UAV systems. Much of that power and size comes from the inefficient inertial sensor and INS processing. There are currently no SoC-based INS commercial or military market solutions that provide high end performance (tactical grade and higher) that can address the power and volume needs of A-UAVs. Added capabilities for TRUSTED IC.	
MEMS based INS: Inertial Sensors, Atom	Objective	
2in ³ ,1W, \$300 (2021) IW Algorithms IP Clock St 100 in ³ ,10W, \$100K (today)	The SoC implements a robust inertial navigation system (INS) operating with navigation grade inertial sensors, integrated atomic clock accurate timing, vision aiding & localization, and GPS anti-spoofing. It incorporates extensive security for resilience to tampering, HW attacks, and counterfeiting. The 14nm technology drastically reduces SWaP & enables self-calibrating navigation for ubiquitous trusted inertial-based sub-millimeter position awareness and low noise long term stable timing in Air Force autonomous systems.	
Technical Approach	Customers/Partners/Stakeholders	
 The SoC incorporates InertialWave's innovative inertial sensor controller technology which integrates a direct digital baseband architecture, inertial sensor control, compensation and electronic self-calibration algorithms, and sensor fusion algorithms implemented in a 6-degree of freedom (DOF) multi-channel configuration to provide an ultra-compact solution. Added capability for short noise, long term stable clock generation for timing support. 	erm <u>SoC Team (Phase 3)</u> Demo Partners (Phase 4/5)	
Target Application and Demonstration		
 Our target application is to provide resilient mission operation with precise positioning, navigation, and timing capabilities integrated into autonomous unmanned air vehicles (A-UAVs) operating against a peer or near-peer adversa inherently contested cyber and electromagnetic environments. 	UT Dallas U of Minnesota U of Washington, A-UAVS	
U	CLASSIFIED	
	Microplastranias Dasian and	

inertialwave inc July 2020

IoT/AI **Autonomous Nanodrone for In-building and Subterranean Operations** (Intelesense Technologies)

✓ SR/Low Vis Ops

IoTA

ti-Domain & Command Center

Mission Integrations - COPs

Dr Kevin Montgomery, kevin@iot.ai **Problem Statement** ✓ Tactical Human & Autonomous Squads ✓ Base Defense Current UAV RF comms can be easily jammed/cracked/spoofed ✓ Maintenance ✓ Training ✓ Wargaming

Cant penetrate far into buildings/subterranean environments

Current recon drones too big for subterranean environments

Objective

Next-generation trusted radio with superior penetration/ security with advanced mesh network on pocket nanodrone, Low power/weight/size

Technical Approach

Contested Resiliency for

c-UAS & UAS Layered Integration

 Shrink existing field-proven next-generation radio/comms platform down to low-power, low-size single-chip implementation for use in nanodrones, sensors, personnel,...

Target Application and Demonstration

- Deep in-building/subterranean reconnaissance using pocket-sized nanodrone that cannot be jammed/cracked/spoofed
- Additional benefits: Generalized ultrasecure comms platform for ATAK, sensors, general UAV use, etc with high scalability and resilience UNCLASSIFIED

Customers/Partners/Stakeholders

USAF:

• ABMS/Agile Combat, Base Security, Flightline of the Future)

Army:

School of Infantry, Futures Command)

DHS/DOI:

Drone communications

Non-govt:

Emerson Process Controls, Amazon, Textron, ENSCO

Distribution Statement A: Approved for public release; DOPSR Case # 20-S-1941 applies. Distribution is unlimited.

Resilient I PI/I PD 11rha

Sub-t. Contested

Low RF Stealth & Disconnecte TAK integration